Percent by Weight Passing Sieves
Sieve
Test
Test
Test
Test
Size
JMF
No. 1
No. 2
No. 3
No. 4
____
___
_____
_____
_____
_____
No. 4
35
31
36
38
33
No. 8
15
12
18
19
14
No. 30
8
5
11
12
7
No. 200
4
2
5
6
4
Mean Absolute Deviation for 0.075 mm No. 200 Sieve = ((Absolute value of
2-4) + (Absolute value of 5-4) + (Absolute value of 6-4) + (Absolute value
of 4-4))/4 = (2+1+2+0)/4 = 1.25
The mean absolute deviation for other sieve sizes can be determined in a
similar way for this example to be:
Sieve
19.0
12.5
9.5
Size
mm
mm
mm
4.75 mm
2.36 mm
0.60 mm
____
_____
____
________
_______
_______
Mean
0
0.75
2.25
2.50
2.75
2.75
Absolute
Deviation
Sieve
3/4
1/2
3/8
Size
inch
inch
inch
NO. 4
NO. 8
NO. 30
____
____
____
____
_____
______
Mean
0
0.75
2.25
2.50
2.75
2.75
Absolute
Deviation
The least percent payment determined for any sieve size listed in TABLE III
would be 98 percent for the 0.075 mm No. 200 sieve. Therefore for this
example, the computed percent payment based on aggregate gradation is 98
percent.
---------------------------------------------------------------------------
End of Example
TABLE III.
PERCENT PAYMENT BASED ON MEAN ABSOLUTE DEVIATION
Percent Payment Based On
Mean Absolute Deviation From JMF
Sieve
0.0-
1.1-
2.1-
3.1-
4.1-
5.1-
Above
Size
1.0
2.0
3.0
4.0
5.0
6.0
6.0
_____
___
___
___
___
___
___
_____
19.0 mm
100
100
100
100
98
95
90
12.5 mm
100
100
100
100
98
95
90
9.5 mm
100
100
100
100
98
95
90
4.75 mm
100
100
100
100
98
95
90
2.36 mm
100
100
100
98
95
90
reject
0.60 mm
100
100
100
98
95
90
reject
0.075 mm
100
98
90
reject
reject
reject
reject
SECTION 02747
Page 22